DRX-499 has remained, for many years, the mainstay 500 MHz spectrometer for most of the research work using NMR in the department. It continues to be a popular spectrometer that is very reliable and stable. It is used for multinuclear 1D as well as 2D spectra acquisition.

Between the two 500 MHz instruments, DRX-499 is preferred for 13C, 19F, and 31P detection.

Features

- Bruker Avance DRX series instrument
- 1H Frequency: 500.13 MHz
- 2H field-frequency lock system
- MAGNET and Shim system
 - Oxford narrow bore (53mm) Cryomagnet
 - BOSS2 shim system
 - 28 RT shim gradients
 - BSMS/2 keyboard
 - Bruker vibration damper system included (doughnut type)
- Host Operating System: RedHat Enterprise Linux 6.2
- VT range: −80°C to +70°C (up to 12 hrs. at max temperature)
- RF Section
 - Three channels (FCU1, FCU2 and FCU3)
 - Dual (50 W 1H + 300W X) BLAXH50 amplifier
 - Dedicated 300W BLAX300RS amplifier for third channel
 - System is equipped with QNP switch accessory to perform 19F (1H) double resonance experiments.
 - HPPR/2 2H-STOP preamplifier.
- Pulse shaping capability to design shaped and shifted RF pulses and gradient pulses.
- Digital
 - Digital quadrature detection
 - 5 MHz sampling rate ADC
- Accustar Z gradient amplifier that can generate a maximum of 56 Gauss/cm field gradients is part of the system.
- Gradient assisted shimming can be performed with available software in Topspin.
- Software
 - Runs on TOPSPIN 1.3

Currently installed Probehead

Bruker triple resonance BBO : X \{ ^1H \} with Z-gradient

Other probeheads available:

- Bruker triple resonance TXO : \(^{19}F \{ ^1H, ^13C \} \) with Z-gradient
- Bruker triple resonance HCP : \(^1H \{ ^{13}C, ^31P \} \) with Z-gradient
- Bruker triple resonance HCN : \(^1H\{ ^{13}C, ^15N \} \) with Z-gradient

Department of Chemistry
University of Washington
109 Bagley Hall
Box 351700
Seattle, WA 98195-1700

Main Office: 206.543.1610
chemdesk@uw.edu

Advising: 206.616.9880
advisers@chem.washington.edu

Source URL: https://chem.washington.edu/instruments/drx-499