CHEMISTRY 199 - SPECIAL PROBLEMS CHEMISTRY 299W - SPECIAL PROBLEMS AND REPORT WRITING PROJECT INFORMATION SHEET

Chemistry 199 and 299W are variable credit courses offered on a Credit/No Credit basis designed to introduce freshman and sophomore students, with at least a 3.0 chemistry gpa, to chemistry research. A maximum of 6 credits each of 199 and 299W can apply to degree credit requirements. After a student has approval to register from a Faculty Supervisor, faculty add codes may be obtained in the Chemistry Advising Office, Bagley 303 or by emailing advisers@chem.washington.edu.

Professor	Field	Required Background	Type of Work Involved
B. Cossairt 404K CHB 543-4643 cossairt@chem. washington.edu	Inorganic and materials chemistry/nano- technology/synthesis	General chemistry and a strong interest in inorganic chemistry; minimum commitment of 3 quarters at 12 hours/week	Synthesis, reactivity studies and characterization (spectroscopy, electron microscopy, X-ray diffraction, electrochemistry) of inorganic molecules and materials
D. Ginger 213 BAG 685-2331 ginger@chem. washington.edu	Physical and materials chemistry/ nanotechnology	Desire to learn by working hard; minimum time commitment is 20 hours per week for at least 4 continuous quarters	COVID-19 update: We are currently offering only remote projects for undergrads. An interest in computer programming, especially Python, or a willingness to learn, would be an asset. Projects could range from solar cell modelling, to machine learning and big data analytics for image processing and analysis.
A. McCoy 482A BAG 543-7464 abmccoy@uw.edu	Physical/Computational/ Theoretical	A solid background in general chemistry and a desire to work hard and learn.	Students will study chemical reactions using a variety of computational approaches. Many of the systems we study are important in atmospheric and astrochemistry.
P. Rathod 192 BAG 221-6069 rathod@chem. washington.edu	Biorganic, genomics, microbiology	A very strong academic record: dedication to develop research skills; initiative and creativity. Early Honors students with long-term research interests will get high preference	Malaria biochemistry, pharmacology, and genomics in the Seattle lab, and molecular support for malaria field-based studies in India.
A. Theberge 225 BAG 685-2330 abt1@uw.edu	Analytical/Biological Chemistry Biomedical Science & Engineering	Strong motivation, desire to do collaborative research; minimum time commitment of 15 hours/week for 6 quarters	Our group develops microfluidic technology to study a wide variety of disease pathologies, as well as human-microbe interactions. We apply basic chemistry and biology concepts to our fluidic technologies in an effort to simplify and model complex biological systems. Research includes engineering/fabrication, computer aided design, fluid mechanics, surface chemistry, cell culture, and metabolomics.
F. Turecek 218 BAG 685-2041 turecek@chem. washington.edu	Analytical/organic	Strong motivation; willing to work in lab 12 hours per week for three quarters; through organic chem and CHEM 321; physical chemistry helpful	Development of mass spectrometric techniques; organic and bioorganic structural analysis; chemistry of transient radicals; atmospheric radicals